在體光纖成像記錄分辨率和對(duì)比度是成像質(zhì)量的重要組成部分,分辨率指成像系統(tǒng)所能重現(xiàn)的被測(cè)物體細(xì)節(jié)的數(shù)量,對(duì)比度則是成像系統(tǒng)所產(chǎn)生的被測(cè)物體與其背景之間的灰度差別。攝像頭、鏡頭和燈光是決定分辨率和對(duì)比度的重要因素。成像系統(tǒng)所需較小像素分辨率可由下式計(jì)算:較小分辨率=(物件較長端長度/較小特征尺寸)×2以條形碼為例,假如較長端長度為60mm,較小特征尺寸是0.2mm,那么根據(jù)上式可算出其較小分辨率應(yīng)該是(60/0.2)×2=600鏡頭焦距是分辨率另一種表現(xiàn)形式。在體光纖成像記錄整機(jī)一體化,輕巧便攜。上海在體神經(jīng)元活動(dòng)記錄技術(shù)
單光纖在體光纖成像記錄與內(nèi)窺鏡結(jié)合,實(shí)現(xiàn)了超細(xì)內(nèi)窺。超細(xì)內(nèi)窺鏡在一些特殊檢測(cè)環(huán)境(如耳、鼻、心、腦等)中,可實(shí)現(xiàn)體內(nèi)無創(chuàng)傷檢查。人體耳蝸在人耳內(nèi)部深處,由于耳道的結(jié)構(gòu)復(fù)雜,很難從耳外觀察內(nèi)部的結(jié)構(gòu),采用超細(xì)內(nèi)窺鏡,可以讓內(nèi)窺鏡通過耳道,直接進(jìn)入耳朵內(nèi)部,然后對(duì)內(nèi)部結(jié)構(gòu)進(jìn)行觀察。對(duì)于人體的細(xì)小腔道結(jié)構(gòu)(如血管、乳管和支氣管等),以前無法從腔道內(nèi)部進(jìn)行檢查,只能通過超聲B超和醫(yī)學(xué)CT等醫(yī)學(xué)影像技術(shù)從體外進(jìn)行成像,成像分辨率低,而且不能對(duì)腔道內(nèi)部的生物狀態(tài)進(jìn)行實(shí)時(shí)觀察。通過超細(xì)內(nèi)窺鏡,可以將光纖探頭通過導(dǎo)管擴(kuò)張器直接插入腔道,探頭所在位置的圖像直接顯示到計(jì)算機(jī)或顯示器屏幕上,醫(yī)生可以直觀地進(jìn)行診斷和分析。莆田腦立體定位單光纖成像技術(shù)在體光纖成像記錄包含較多的單模光纖。
在體光纖成像記錄科研人員從光源掃描方式、光束偏轉(zhuǎn)方式和重建算法等方面開展研究。采用一個(gè)點(diǎn)陣光源,用電控的方法掃描不同方向的光束。與現(xiàn)有的振鏡掃描系統(tǒng)相比,該方法結(jié)構(gòu)緊湊,掃描速度快,可以實(shí)現(xiàn)系統(tǒng)集成。利用聲光偏轉(zhuǎn)器件可實(shí)現(xiàn)光束偏轉(zhuǎn),并結(jié)合波導(dǎo)器件實(shí)現(xiàn)多模光纖成像。對(duì)于單光纖成像系統(tǒng),盡管實(shí)際測(cè)量時(shí)只需拍攝一次圖像,但在傳輸矩陣的構(gòu)建、相位場(chǎng)的計(jì)算以及圖像重建過程中,計(jì)算量大、計(jì)算時(shí)間長,因此新的算法也在不斷被研究。目前單光纖成像技術(shù)水平與實(shí)際應(yīng)用需求之間還有較大距離,但成像方法和關(guān)鍵部件技術(shù)的快速進(jìn)步為將來實(shí)現(xiàn)小型化、全固態(tài)和算法嵌入提供了有力支持。
小動(dòng)物在體光纖成像記錄圖像處理軟件除了提供含有光子強(qiáng)度標(biāo)尺的成像圖片外,還能計(jì)算分析發(fā)光面積、總光子數(shù)、光子強(qiáng)度的相關(guān)參數(shù)供實(shí)驗(yàn)者參考。原則上,如預(yù)實(shí)驗(yàn)時(shí)拍攝出圖片非特異性雜點(diǎn)多,需降低曝光時(shí)間;反之,如信號(hào)過弱可適當(dāng)延長曝光時(shí)間。但曝光時(shí)間的延長,不單增加了目的信號(hào),對(duì)于背景噪音也存在一個(gè)放大效應(yīng)。同一批實(shí)驗(yàn)應(yīng)保持一致的曝光時(shí)間,同時(shí)還應(yīng)保持標(biāo)本相對(duì)位置和形態(tài)的一致,從而減少實(shí)驗(yàn)誤差。進(jìn)行熒光成像時(shí),實(shí)驗(yàn)者可選擇背景熒光低不容易反光的黑紙放在動(dòng)物標(biāo)本身下,減少金屬載物臺(tái)的反射干擾。在體光纖成像記錄光源的發(fā)光強(qiáng)度隨深度增加而衰減。
在體光纖成像記錄的應(yīng)用,揭示機(jī)體的生理病理改變過程,目前, 在體生物光學(xué)成像技術(shù)己成功應(yīng)用于 干細(xì)胞移植、 壞掉的免疫、 毒血癥、 風(fēng)濕性關(guān)節(jié)炎、 皮炎等發(fā)病機(jī)制的研究中, 可以實(shí)時(shí)監(jiān)測(cè)生物機(jī)體的生理、病理改變過程, 具有重要的臨床意義。藥物的篩選和評(píng)價(jià)的應(yīng)用目前 , 轉(zhuǎn)基因動(dòng)物模型己大量應(yīng)用于病理研究、藥物研發(fā)、 藥物篩選和藥物評(píng)價(jià)等領(lǐng)域。通過體外基因轉(zhuǎn)染或直接注射等手段, 將熒光素酶或綠色熒光蛋 自等報(bào)告基因標(biāo)記在生物體內(nèi)的任何細(xì)胞, 如:壞掉的細(xì)胞、 造血細(xì)胞等上, 采用在體生物光學(xué)成像技術(shù)對(duì)其示蹤, 了解細(xì)胞在生物體內(nèi)的轉(zhuǎn)移規(guī)律,不單能夠檢測(cè)轉(zhuǎn)基因動(dòng)物體 內(nèi)的基因表達(dá)或 內(nèi)源性基因的活性和功能, 而且能夠?qū)λ幬锖Y選及療效進(jìn)行評(píng)價(jià)。在體光纖成像記錄不需要掃描器件。莆田腦立體定位單光纖成像技術(shù)
在體光纖成像記錄高功率的激光放大器和那些依賴于融合多個(gè)相同性質(zhì)。上海在體神經(jīng)元活動(dòng)記錄技術(shù)
現(xiàn)有技術(shù)中的在體光纖成像記錄系統(tǒng)仍包含多根多模光纖,若待成像物體所處環(huán)境的空間較窄,可能會(huì)導(dǎo)致該光纖成像系統(tǒng)中的多根多模光纖無法進(jìn)入待成像物體所處環(huán)境,也就無法獲取到待成像物體的圖像,導(dǎo)致光纖成像系統(tǒng)的適用范圍較窄。提供的光纖成像系統(tǒng)靠近待成像物體一側(cè)只包含一根多模光纖即第三多模光纖,相對(duì)于現(xiàn)有技術(shù),能夠減少進(jìn)入待成像物體所處環(huán)境的光纖的數(shù)目。因此,基于本發(fā)明實(shí)施例提供的光纖成像系統(tǒng),也就能夠獲取到所處環(huán)境的空間較窄的待成像物體的圖像,進(jìn)而,可以提高光纖成像系統(tǒng)的適用范圍。上海在體神經(jīng)元活動(dòng)記錄技術(shù)