大規(guī)模生產階段,AAV/LV載體生產流程跟抗體、疫苗類藥物的生產類似,主要包含上游培養(yǎng)、下游純化及制劑部分。上游培養(yǎng)分為質粒開發(fā)、細胞擴增、三質粒共轉染及病毒載體生產等步驟。下游純化分為細胞裂解釋放AAV病毒顆粒(可以通過去污劑、機械作用、高滲或凍融操作等)or收獲細胞上清液得到含LV病毒原液、加入核酸酶以減少宿主細胞核酸污染、澄清是通過離心或過濾等方法去除細胞碎片和雜質等、超濾濃縮以減少后續(xù)色譜純化體系、親合及離子交換等純化得到高純度病毒載體。制劑部分主要是超濾更換緩沖液、過濾除菌及制劑灌裝等。相比全能核酸酶,M-SAN HQ中鹽核酸酶能將HCD酶切成更小片段,破壞核小體結構。福建等滲條件中鹽核酸酶70950-160
ArcticZymes Technologies于2019年推出了M-SAN HQ中鹽核酸酶,2021年推出對應的M-SAN HQ ELISA kit。該試劑盒原理是采用雙抗夾心法定量檢測各種生物制品的中間品、半成品和成品中M-SAN HQ中鹽核酸酶的殘留含量,特異性的anti-M-SAN作為捕獲抗體偶聯在孔板上,辣根過氧化酶HRP標記anti-M-SAN作為檢測抗體,TMB是檢測反應底物。該試劑盒特異識別M-SAN HQ中鹽核酸酶,對其它核酸酶沒有特異性結合。它的定量范圍是0.12-7.5ng/ml;12*8strips的設計規(guī)格,使用靈活,更能降低使用成本。福建等滲條件中鹽核酸酶70950-160M-SAN HQ中鹽核酸酶是用Pichia pastoris表達的重組非特異內切核酸酶。
大多數研究級別的慢病毒是通過批次濃縮而不是粗制劑之后應用的,濃縮基本上是通過兩步離心法產生的。在70000g通過超速離心濃縮后的慢病毒再通過蔗糖緩沖(50000g)純化,然后溶解在配方緩沖液中。一種改進,特別是純度方面的改進,基于離心/色譜聯用的純化方法。例如,Kutner等評估了組合純化/濃縮方法。蔗糖緩沖的超速離心結合陰離子交換層析獲得了88.2%的收率,而相反的組合則獲得了77.6%的收率。在兩種方法中,濃縮都超過了100倍,病毒滴度都超過了1010TU/ml(VSV-g包被的慢病毒)。
倫敦大學學院(UCL)的工藝開發(fā)團隊,在細胞藥物Car-T涉及的慢病毒(Lentivirus,LV)生產過程中,比較了Benzonase和M-SAN HQ中鹽核酸酶在酶活、酶切時間、各階段LV的穩(wěn)定性等方面的表現,發(fā)現在生理鹽條件下M-SAN HQ中鹽核酸酶酶活更高、酶切時間更短,同時用納米顆粒分析(NTA)技術確認M-SAN HQ組得到的LV病毒顆粒聚集更少、穩(wěn)定性更高。他們會繼續(xù)探究HCD是否影響LV的穩(wěn)定性,及對LV侵染效率和生命周期是否有影響。通過更多研究,我們探究M-SAN HQ中鹽核酸酶助力LV生產的關鍵機制。M-SAN HQ中鹽核酸酶的檢測標準,都符合USP-EP要求。
在生物工藝流程中,需要使用核酸酶去除終產品中的核酸污染,而核酸酶作為外源成份,也需要在生產流程中去除。核酸酶去除工藝包括熱滅活法、酶抑制劑、離子交換和親合層析法等。慢病毒LV的pI在6.0-6.5左右,包裝了完整基因組DNA后的AAV病毒顆粒PI大致為5.9,來自于S.marcescens的全能核酸酶pI 6.85左右,M-SAN HQ中鹽核酸酶pI 8.7左右。因此,在同樣的條件下,從LV/AAV溶液中去除M-SAN HQ中鹽核酸酶比去除Benzonase全能核酸酶更容易、更徹底。染色質的雙螺旋結構影響DNA的檢測與酶切處理,而中鹽核酸酶降解染色質效率更高。廣東ArcticZymes中鹽核酸酶70950
M-SAN HQ中鹽核酸酶兼容常見細胞培養(yǎng)基,在多種培養(yǎng)基條件下去除核酸污染效率更高;福建等滲條件中鹽核酸酶70950-160
病毒載體作為細胞藥物生產的關鍵原材料,直接關系到細胞產品質量。載體質量的控制和工藝穩(wěn)定性和批間一致性都是關系到產品能否產業(yè)化的關鍵。在生產純化過程中,需要去除上游過程中的培養(yǎng)基成分、誘導劑、宿主蛋白和核酸等雜質,但是由于逆轉錄病毒顆粒比較大,高異質表面糖蛋白,而且活性易于受剪切影響,對下游純化提出了巨大的挑戰(zhàn)。目前病毒載體純化方法包括超速離心、離子交換層析、分子排阻層析、親和層析、滲濾等。各種方法各有利弊,就產業(yè)化而言,離子交換純化效果比較好,條件易于摸索,易于規(guī)模放大。福建等滲條件中鹽核酸酶70950-160