目標(biāo)跟蹤算法具有不同的分類標(biāo)準(zhǔn),可根據(jù)檢測(cè)圖像序列的性質(zhì)分為可見(jiàn)光圖像跟蹤和紅外圖像跟蹤;又可根據(jù)運(yùn)動(dòng)場(chǎng)景對(duì)象分為靜止背景目標(biāo)跟蹤和運(yùn)動(dòng)背景下的目標(biāo)跟蹤。由于基于區(qū)域的目標(biāo)跟蹤算法用的是目標(biāo)的全局信息,比如灰度、色彩、紋理等。因此當(dāng)目標(biāo)未被遮擋時(shí),跟蹤精度非常高、跟蹤非常穩(wěn)定,對(duì)于跟蹤小目標(biāo)效果很好,可信度高。但是在灰度級(jí)的圖像上進(jìn)行匹配和全圖搜索,計(jì)算量較大,非常費(fèi)時(shí)間,所以在實(shí)際應(yīng)用中實(shí)用性不強(qiáng);其次,算法要求目標(biāo)不能有太大的遮擋及其形變,否則會(huì)導(dǎo)致匹配精度下降,造成運(yùn)動(dòng)目標(biāo)的丟失。目標(biāo)跟蹤的板卡哪家做的好呀?廣東目標(biāo)跟蹤互惠互利
在智慧農(nóng)業(yè)領(lǐng)域可以分為人工干涉和無(wú)人值守2種。系統(tǒng)提供了良好的人機(jī)界面,用戶可以通過(guò)系統(tǒng)的視頻顯示區(qū)觀看攝像機(jī)攝制的現(xiàn)場(chǎng)視頻,此時(shí),用戶可以人工通過(guò)系統(tǒng)提供的按鈕以各種方式控制云臺(tái),即人工可以干涉監(jiān)控的過(guò)程。系統(tǒng)在大部分情況下處于無(wú)人值守的工作狀態(tài),當(dāng)監(jiān)控中心的計(jì)算機(jī)系統(tǒng)收到外場(chǎng)設(shè)備的預(yù)警信號(hào)后,將自動(dòng)向攝像機(jī)云臺(tái)發(fā)出控制信號(hào),控制攝像機(jī)將發(fā)生報(bào)警區(qū)域的圖像鎖定在監(jiān)視器上,并同時(shí)按系統(tǒng)的設(shè)定調(diào)整好焦距,視野大小等。然后系統(tǒng)自動(dòng)轉(zhuǎn)入運(yùn)動(dòng)檢測(cè),檢測(cè)當(dāng)前區(qū)域是否有運(yùn)動(dòng)目標(biāo),如果有運(yùn)動(dòng)目標(biāo),則系統(tǒng)給出目標(biāo)的一般性描述,提交給目標(biāo)跟蹤模塊,對(duì)目標(biāo)進(jìn)行跟蹤。在這過(guò)程中,系統(tǒng)將作日志,記錄事故位置、時(shí)間等,同時(shí)對(duì)采集到的圖像作硬盤錄像。青海目標(biāo)跟蹤多少錢慧視光電的RK3588跟蹤板怎么樣?
作為社區(qū)的基本單元,小區(qū)是智慧城市建設(shè)的重要一環(huán),而在安防領(lǐng)域,小區(qū)更是守護(hù)家庭的門戶,如何更加高效的守護(hù)小區(qū)安全是社區(qū)創(chuàng)新基層治理的探索方向。經(jīng)過(guò)技術(shù)的不斷革新,智慧安防逐漸成為這個(gè)方向。通過(guò)在小區(qū)傳統(tǒng)人防、物防、技防的基礎(chǔ)上,應(yīng)用人工智能、物聯(lián)網(wǎng)等當(dāng)前先進(jìn)的信息化技術(shù),對(duì)居民小區(qū)安防系統(tǒng)進(jìn)行智能化升級(jí),加強(qiáng)對(duì)社區(qū)人、車、事、物、地、組織“信息進(jìn)行感知”,打造并集成出入口、智能門禁、信息卡口、移動(dòng)巡防、視頻監(jiān)控、報(bào)警聯(lián)防、信息發(fā)布、停車場(chǎng)、訪客、梯控等產(chǎn)品及子系統(tǒng),也包括智慧物管安防綜合平臺(tái),實(shí)現(xiàn)數(shù)據(jù)的統(tǒng)一匯聚、統(tǒng)一管理。
視覺(jué)目標(biāo)跟蹤是指對(duì)圖像序列中的運(yùn)動(dòng)目標(biāo)進(jìn)行檢測(cè)、提取、識(shí)別和跟蹤,獲得運(yùn)動(dòng)目標(biāo)的運(yùn)動(dòng)參數(shù),如位置、速度、加速度和運(yùn)動(dòng)軌跡等,從而進(jìn)行下一步的處理與分析,實(shí)現(xiàn)對(duì)運(yùn)動(dòng)目標(biāo)的行為理解,以完成更高一級(jí)的檢測(cè)任務(wù)。根據(jù)跟蹤目標(biāo)的數(shù)量可以將跟蹤算法分為單目標(biāo)跟蹤與多目標(biāo)跟蹤。相比單目標(biāo)跟蹤而言,多目標(biāo)跟蹤問(wèn)題更加復(fù)雜和困難。多目標(biāo)跟蹤問(wèn)題需要考慮視頻序列中多個(gè)單獨(dú)目標(biāo)的位置、大小等數(shù)據(jù),多個(gè)目標(biāo)各自外觀的變化、不同的運(yùn)動(dòng)方式、動(dòng)態(tài)光照的影響以及多個(gè)目標(biāo)之間相互遮擋、合并與分離等情況均是多目標(biāo)跟蹤問(wèn)題中的難點(diǎn)。國(guó)產(chǎn)化跟蹤板哪家好?
2010年以前,目標(biāo)跟蹤領(lǐng)域大部分采用一些經(jīng)典的跟蹤方法,比如Meanshift、Particle Filter和Kalman Filter,以及基于特征點(diǎn)的光流算法等。Meanshift方法是一種基于概率密度分布的跟蹤方法,使目標(biāo)的搜索一直沿著概率梯度上升的方向,迭代收斂到概率密度分布的局部峰值上。首先Meanshift會(huì)對(duì)目標(biāo)進(jìn)行建模,比如利用目標(biāo)的顏色分布來(lái)描述目標(biāo),然后計(jì)算目標(biāo)在下一幀圖像上的概率分布,從而迭代得到局部密集的區(qū)域。Meanshift適用于目標(biāo)的色彩模型和背景差異比較大的情形,早期也用于人臉跟蹤。由于Meanshift方法的快速計(jì)算,它的很多改進(jìn)方法也一直適用至今。AI算法賦能下的圖像處理板能夠進(jìn)行智能目標(biāo)識(shí)別。快速目標(biāo)跟蹤
成都慧視的跟蹤版是國(guó)產(chǎn)化的嗎?廣東目標(biāo)跟蹤互惠互利
自動(dòng)化的視頻跟蹤系統(tǒng)的工作流程一般是攝像機(jī)的模擬信號(hào)通過(guò)視頻電纜傳送至計(jì)算機(jī),計(jì)算機(jī)通過(guò)視頻采集卡將模擬視頻信號(hào)轉(zhuǎn)換為數(shù)字視頻信號(hào),該轉(zhuǎn)換的輸出的數(shù)字圖像一方面在計(jì)算機(jī)CRT上顯示,同時(shí)傳送至內(nèi)存進(jìn)行目標(biāo)檢測(cè)或跟蹤(根據(jù)需要可同時(shí)進(jìn)行硬盤錄像),計(jì)算機(jī)根據(jù)算法的運(yùn)算結(jié)果來(lái)控制攝像機(jī)的云臺(tái),這個(gè)控制過(guò)程是通過(guò)通訊協(xié)議卡和雙絞線電纜和攝像機(jī)的云臺(tái)接口來(lái)完成的。監(jiān)視和跟蹤系統(tǒng)的啟動(dòng)可以是人工的,也可以由系統(tǒng)的報(bào)警輸入設(shè)備啟動(dòng)。高性能的圖像卡一般自帶顯卡,能夠避免廉價(jià)的多媒體卡長(zhǎng)時(shí)間地、連續(xù)地通過(guò)總線傳送到計(jì)算機(jī)的顯存而帶來(lái)的死屏、CPU的占用及總線的占用等問(wèn)題。廣東目標(biāo)跟蹤互惠互利