熒光標記的靶向微泡在非心臟病血管的應用。使用熒光微泡可以通過***顯微鏡實現(xiàn)超聲造影劑靶向的驗證。特異性配體包括抗p選擇素的抗體,該抗體可通過局部給藥腫瘤壞死因子(TNF)-進行化學誘導。通過顯微鏡和超聲觀察到***后小靜脈內抗p選擇靶向氣泡和白細胞的聚集。缺血再灌注損傷后(如腎動脈結扎模型),p選擇素上調,微泡可靶向炎癥的腎血管。出于分子成像造影劑開發(fā)的目的,一種不需要***手術的更簡單的動物模型可能是有用的,例如在腳墊注射TNF-后建立的后腿血管化學誘導炎癥反應小鼠模型。該模型用于測試聚合微泡與抗體靶向泡。細胞間黏附分子(ICAM)-1和血管細胞黏附分子(VCAM)-1是炎癥反應的重要標志物,在血管內皮表面上調的時間晚于p選擇素。攜帶這些抗體的微泡可用于大鼠自身免疫性腦脊髓炎模型的分子成像。超聲微泡造影劑成像的優(yōu)勢在于其獨特的多路復用方法和快速的過程。全氟烷超聲微泡報價
超聲微泡造影劑成像的優(yōu)勢在于其獨特的多路復用方法和快速***的過程。與其他成像方式相比,超聲微泡造影劑成像的優(yōu)勢在于其獨特的多路復用方法。通常情況下,當分子成像造影劑在體內使用時,它會循環(huán)一段時間,并在靶體內積累得相當緩慢。血液***也是一個漫長的過程。為了針對幾種不同的配體(如上面列出的所有配體)進行成像,必須使用具有不同光譜特征的幾種染料或具有不同發(fā)射能量分布或衰變動力學的放射性同位素進行標記。在超聲對比設置中,我們不能用不同的顏色“涂”微泡。然而,我們可以利用循環(huán)造影劑從血流中快速(在幾分鐘內)***的優(yōu)勢,以及分別通過對心室和靶的超聲波破壞殘余循環(huán)和沉積造影劑的能力。在一小時內,針對幾個目標的分子成像可以**進行,并且可以獲得感興趣組織的完整分子圖譜。綠色熒光超聲微泡核酸如果這些氣泡要在患者體內給藥后與特定受體結合,就必須將靶向配體附著到微泡殼上。
超聲微泡的殼體類型的變化會影響所產生氣泡的厚度、剛度和耐久性。除此之外,殼的厚度在氣體**和外部介質之間起著屏障的作用,不同的材料會產生不同的殼厚度。含脂類的殼厚約為3nm,而基于蛋白質和聚合物的殼厚分別約在15 - 20nm和100 - 200nm之間。脂基超聲微泡比聚合物基超聲微泡更容易制備和修飾。脂基超聲微泡常用的外殼材料包括二油基磷脂酰乙醇胺(DOPE)、1,2-二棕櫚酰-sn-甘油-3-磷脂酰膽堿(DPPC)和1,2-二硬脂酰-sn-甘油-3-磷脂酰膽堿(dsc)。殼聚糖和白蛋白是聚合物基超聲微泡和蛋白質基超聲微泡中使用的材料的例子。聚乳酸-羥基乙酸(PLGA)由于其天然的生物可降解性,也是合成超聲微泡的常用材料。
隨著微泡造影劑的加入超聲對***大小的血管和非常低的流速變得敏感,同時保持了傳統(tǒng)b型成像檢測形態(tài)信息的能力。由于它們具有高度可壓縮性并導致超聲的強散射,因此微泡在超聲圖像上顯得非常明亮。當失音時,這些介質的膨脹和收縮導致非線性信號的產生。功率多普勒成像涉及一系列超聲脈沖的傳輸和接收,其中脈沖之間的散射體運動用于檢測血流。功率多普勒與超聲造影劑相結合可提高小血管的檢出率。在人類乳腺腫塊的二維和三維功率多普勒超聲檢查中發(fā)現(xiàn),組織邏輯微血管密度(MVD)與**內血管數(shù)量之間存在很強的相關性。另一項研究利用**中增強像元與總像元的比例來跟蹤小鼠異種移植**的抗血管生成***。與對照組相比,***組的信號像元率***降低,并與MVD相關。已經(jīng)描述了各種其他方法來增強非線性造影劑回波并抑制周圍組織產生的回波。諧波成像是一大類技術,它們具有以一個頻率發(fā)送入射光束并以入射光束的諧波(整數(shù)倍)偵聽返**聲的共同特征。雖然諧波成像是一種有用的技術,但它也有局限性。**重要的是,由于固有的根據(jù)該技術的特性通常必須在圖像對比度和空間分辨率之間做出妥協(xié)。此外,由于非線性聲音傳播,組織也會產生非線性回聲,從而降低對比度分辨率。了解微泡靶向性的方法是在體外受控條件下,以已知的流速、配體和受體密度進行靶向性研究。
超聲照射聯(lián)合納米微泡的生物學效應。超聲給藥技術是基于細胞穿孔的生物物理過程,超聲結合納米微泡和這個過程被稱為超聲穿孔。與其他納米粒子相比,納米微泡在超聲能量照射下具有“塌縮”的特殊性質,導致納米微泡內爆,改變細胞膜的通透性。當超聲能量充分增加時,就會發(fā)生“超聲空化”效應,即液體中的氣泡(空化核)振動生長,不斷地從聲學場中積累能量并坍縮,直到能量達到某一閾值。超聲波照射引起超聲空化,導致細胞膜出現(xiàn)直徑約300nm的空隙,穩(wěn)定空化的特征是納米氣泡重復的、不坍縮的振蕩,對附近細胞產生局部低應力和剪切應力,從而增加血管的通透性。此外,超聲波輻照還能產生熱和機械***作用。超聲波輻照的生物學效應可以增加細胞膜的通透性,誘導基因轉移,提高細胞內藥物濃度,栓塞**,滋養(yǎng)血管,克服組織屏障,發(fā)揮至關重要的靶向作用。超聲微泡的殼體類型的變化會影響所產生氣泡的厚度、剛度和耐久性。湖北綠色熒光超聲微泡
超聲聯(lián)合納米微泡遞送RNA。全氟烷超聲微泡報價
微泡的制造通常通過兩種通用技術來進行:分散氣體顆粒的自組裝穩(wěn)定,以及芯萃取的雙乳液制備。第一種技術用于脂質或蛋白質基氣泡。氣體(溶解度低的空氣或氟化氣體)分散在含有脂質或表面活性劑膠束混合物或經(jīng)超聲變性的蛋白質的水介質中。這些成分沉積在氣液界面上,使其穩(wěn)定下來。有些微泡制劑在水相中保存數(shù)月仍能保持穩(wěn)定。或者,微泡可以快速冷凍和凍干,以便在干燥狀態(tài)下延長儲存時間。水的加入導致微泡水分散體在使用前立即發(fā)生重組。聚合微泡是通過雙乳液水-油-水技術制備的,該技術通過高剪切混合或超聲在水相中產生有機溶劑微粒。有機“油”溶膠噴口含有溶解的可生物降解聚合物(如聚乳酸-共乙醇酸),以及內部水相的微滴或納米滴。然后對顆粒進行凍干或噴霧干燥。有機溶劑和水被除去,留下一個內部有空隙的聚合物外殼。通常,加入揮發(fā)性化合物,如碳酸氫銨、碳氫化合物、氟碳化合物或樟腦,以幫助在顆粒中產生空心**。這類顆粒在干燥狀態(tài)下儲存時非常穩(wěn)定。它們在水或生物介質中緩慢水解,形成乳酸和乙醇酸,具有完全的生物相容性。顆粒的殼厚和核大小可以通過聚合物、有機溶劑、內部水和成孔化合物的濃度和比例來控制。全氟烷超聲微泡報價