隨著微泡造影劑的加入超聲對***大小的血管和非常低的流速變得敏感,同時保持了傳統(tǒng)b型成像檢測形態(tài)信息的能力。由于它們具有高度可壓縮性并導致超聲的強散射,因此微泡在超聲圖像上顯得非常明亮。當失音時,這些介質的膨脹和收縮導致非線性信號的產(chǎn)生。功率多普勒成像涉及一系列超聲脈沖的傳輸和接收,其中脈沖之間的散射體運動用于檢測血流。功率多普勒與超聲造影劑相結合可提高小血管的檢出率。在人類乳腺腫塊的二維和三維功率多普勒超聲檢查中發(fā)現(xiàn),組織邏輯微血管密度(MVD)與**內(nèi)血管數(shù)量之間存在很強的相關性。另一項研究利用**中增強像元與總像元的比例來跟蹤小鼠異種移植**的抗血管生成***。與對照組相比,***組的信號像元率***降低,并與MVD相關。已經(jīng)描述了各種其他方法來增強非線性造影劑回波并抑制周圍組織產(chǎn)生的回波。諧波成像是一大類技術,它們具有以一個頻率發(fā)送入射光束并以入射光束的諧波(整數(shù)倍)偵聽返**聲的共同特征。雖然諧波成像是一種有用的技術,但它也有局限性。**重要的是,由于固有的根據(jù)該技術的特性通常必須在圖像對比度和空間分辨率之間做出妥協(xié)。此外,由于非線性聲音傳播,組織也會產(chǎn)生非線性回聲,從而降低對比度分辨率。用于輸送氣體、藥物和核酸,這些載體與超聲波、光熱、pH和光(刺激觸發(fā))超聲微泡相結合。江西超聲微泡動物實驗
超聲微泡的粒徑大小直接影響微泡的動物的體內(nèi)滲透和代謝。首先,與傳統(tǒng)藥物相比,超聲造影劑微泡相對較大。微泡的直徑一般為1-10um。**血管特別具有滲透性,通常有較大的內(nèi)皮間隙;然而,造影劑微泡通常太大而無法脫離脈管系統(tǒng)。在Wheatley等人**近的一篇文章中,描述了一種納米顆粒超聲造影劑(直徑450nm)具有良好的聲學性能。該造影劑在實驗家兔中產(chǎn)生了良好的腎臟混濁。南京星葉生物也有500nm左右的超聲微泡造影劑。雖然超聲造影劑的循環(huán)時間在過去幾年有所增加,但這也是超聲紿藥時需要關注的問題。例如,索諾維的消除半衰期為6分鐘。Albunex的攝取發(fā)生在大鼠和豬的肝臟、肺和脾臟,70%在3分鐘內(nèi)從血液中***。如果藥物被網(wǎng)狀內(nèi)皮系統(tǒng)從循環(huán)中取出,則循環(huán)時間可能不夠長,無法將更多的藥物遞送到目標區(qū)域。造影劑通常被注入外周靜脈,因此在一個給定的循環(huán)周期中,只有少量的造影劑會通過**。為了破壞足夠的造影劑以***增加局部濃度,必須進行多次循環(huán)。聚合物殼劑可**增加循環(huán)時間。雖然超聲微泡是相對較大的藥物,但可以附著在氣泡表面或納入內(nèi)部脂質層的藥物量是一個問題。重慶超聲微泡外殼熒光標記的靶向微泡在血管生成過程中的應用。
研究人員開發(fā)了靶向超聲微泡在***中的應用,以制造一種可行且直接的載體,用于輸送氣體、藥物和核酸,這些載體與超聲波、光熱、pH和光(刺激觸發(fā))超聲微泡相結合。使用超聲微泡輸送***氣體有兩種方法:擴散(自發(fā)過程)和靜脈注射,靜脈注射通過超聲波破壞氣泡繼續(xù)進行。擴散過程與超聲微泡**和血管之間的濃度梯度有關,其中氣體可以擴散出去,因為超聲微泡的外殼是可滲透的。為了釋放被困在超聲微泡中的藥物或氣體,可以通過稱為超聲穿孔的空化過程施加超聲刺激,影響細胞膜的完整性,從而增強藥物傳遞系統(tǒng),包括內(nèi)吞作用和胞吞作用。超聲誘導空化,包括振蕩和破壞,對超聲微泡和周圍組織產(chǎn)生物理影響。空化有兩種類型,即穩(wěn)定空化和慣性空化。穩(wěn)定空化通常用于***,特別是在給藥中,使用超聲和超聲造影劑的組合。穩(wěn)定空化會產(chǎn)生微流,而慣性空化則會產(chǎn)生激波、流體噴射和自由基。慣性空化可以使超聲微泡崩潰,導致細胞膜或組織暫時開放。超聲微泡只有在聚焦超聲輻射的幫助下才能在目標部位坍塌,這可以暫時打開細胞膜以幫助藥物遞送。
將配體附著在微泡表面的基本方法有兩種:要么通過直接共價鍵,要么通過生物素-親和素連接。生物素-親和素連接是一種直接的技術,其中生物素化的配體通過親和素橋連接到生物素化的微泡上。盡管生物素-親和素連鎖在概念驗證和臨床前靶向研究中很有用,但免疫原性使其無法轉化為人類。共價連接是更可取的和可以在創(chuàng)建微泡殼之前或之后進行。偶聯(lián)到預形成的微泡上的策略包括通過碳二亞胺和n-羥基磺基琥珀酰亞胺將配體的氨基與微泡殼上的羧基結合,或者可選地將配體上的巰基與微泡殼上的馬來酰亞胺結合。關于偶聯(lián)化學的更多細節(jié)可以在A.L.Klibanov**近的一篇綜述中找到。對于脂質包被的藥物,使用預形成的配體-脂聚合物的優(yōu)點是,在臨床環(huán)境中,從微泡產(chǎn)生到給藥到患者體內(nèi)所需的步驟更少。然而,通過后期連鎖,通過對預形成的微泡進行一系列修飾,可以更有效地利用配體。如果這些氣泡要在患者體內(nèi)給藥后與特定受體結合,就必須將靶向配體附著到微泡殼上。
微泡表面的加載也可以通過配體-受體相互作用來實現(xiàn)。例如,Lum等人**近報道了一項研究,其中納米顆粒通過生物素-親和素連鎖結合到外殼上。固體聚苯乙烯納米顆粒作為模型系統(tǒng),可以用可生物降解的材料代替裝載藥物或基因的納米顆粒。或者,軟納米顆粒,如脂質體,已成功加載到微泡。這些結果提出了一種模塊化的加載方法,即首先將***性化合物加載到納米顆粒室中,然后將其加載到微泡載體上。這種方法提供了一個多功能平臺,可以根據(jù)特定***劑的疏水性、大小和釋放要求進行定制。過程是利用MNB造影劑與超聲聯(lián)合產(chǎn)生空化效應,以破壞纖維蛋白網(wǎng)。云南超聲微泡外殼
超聲微泡造影劑成像的優(yōu)勢在于其獨特的多路復用方法和快速的過程。江西超聲微泡動物實驗
氣泡在靶區(qū)域的聚集和藥物的釋放主要依賴于各種外源性和內(nèi)源性刺激,并不是由特異性的主動靶向引起的。EPR和血管生成相關表面受體的(過)表達是**血管的關鍵特征。因此,epr介導的被動靶向和基于配體的主動靶向引起了相當大的關注。Kunjachan等人使用RGD和ngr修飾的聚合物納米藥物對被動和主動**靶向進行了可視化和量化。Wu等人開發(fā)了負載紫杉醇和A10-3.2適體靶向的聚(丙交酯-羥基乙酸)納米泡,可以特異性靶向前列腺*細胞,通過EPR效應和us觸發(fā)的藥物遞送持續(xù)釋放負載的PTX。Li等人報道了使用神經(jīng)肽YY1受體介導的可生物降解光致發(fā)光納米泡作為UCAs用于靶向乳腺*成像。通過血管靶向實現(xiàn)了超聲微泡與**血管的快速有效的早期結合,但隨著時間的推移,被動靶向的效率顯著提高。這些結果表明,被動靶向和主動靶向的結合是有效的需要有效的**成像和***。江西超聲微泡動物實驗