生物傳感芯片與任何遠(yuǎn)程的東西交互存在一定問(wèn)題,更不用說(shuō)將具有全功能樣品前處理、檢測(cè)和微流控技術(shù)都集成在同一基質(zhì)中。由于微流控技術(shù)的微小通道及其所需部件,在設(shè)計(jì)時(shí)所遇到的噴射問(wèn)題,與大尺度的液相色譜相比,更加困難。上世紀(jì)80年代末至90年代末,尤其是在研究生物芯片襯底的材料科學(xué)和微通道的流體移動(dòng)技術(shù)得到發(fā)展后,微流控技術(shù)也取得了較大的進(jìn)步。為適應(yīng)時(shí)代的需求,現(xiàn)今的研究集中在集成方面,特別是生物傳感器的研究,開(kāi)發(fā)制造具有很強(qiáng)運(yùn)行能力的多功能芯片。腸道微流控芯片的應(yīng)用。四川微流控芯片技術(shù)的研究進(jìn)展
微流控芯片技術(shù)是生物醫(yī)學(xué)應(yīng)用領(lǐng)域的新興工具。微流控芯片具有在不同材料(玻璃,硅或聚合物,如聚二甲基硅氧烷或PDMS,聚甲基丙烯酸甲酯或PMMA)上的一組凹槽或微通道。形成微流控芯片的微通道彼此互連以獲得期望的結(jié)果。微流控芯片中的微通道的組織通過(guò)穿透芯片的輸入和輸出與外部相關(guān)聯(lián),作為宏觀和微觀世界之間的界面。在泵和芯片的幫助下,微流控芯片有助于確定微流控的行為變化。芯片內(nèi)部有微流控通道,可以處理流體。微流控芯片具有許多優(yōu)點(diǎn),包括較少的時(shí)間和試劑利用率,除此之外,它還可以同時(shí)執(zhí)行許多操作。芯片的微型尺寸隨著表面積的增加而加快反應(yīng)。在接下來(lái)的文章中,我們著重討論各種微流控芯片的設(shè)計(jì)及其生物醫(yī)學(xué)應(yīng)用。湖北微流控芯片單細(xì)胞分析微流控芯片技術(shù)用于基因測(cè)序。
微流控芯片(microfluidic chip)是當(dāng)前微全分析系統(tǒng)(Miniaturized Total Analysis Systems)發(fā)展的熱點(diǎn)領(lǐng)域。微流控芯片分析以芯片為操作平臺(tái), 同時(shí)以分析化學(xué)為基礎(chǔ),以MEMS微機(jī)電加工技術(shù)為依托,以微管道網(wǎng)絡(luò)為結(jié)構(gòu)特征,以生命科學(xué)為目前主要應(yīng)用對(duì)象,是當(dāng)前微全分析系統(tǒng)領(lǐng)域發(fā)展的重點(diǎn)。它的目標(biāo)是把整個(gè)化驗(yàn)室的功能,包括采樣、稀釋、加試劑、反應(yīng)、分離、檢測(cè)等集成在微芯片上,且可以多次使用。包括:白金電阻芯片, 壓力傳感芯片, 電化學(xué)傳感芯片, 聲學(xué)微流控芯片,微/納米反應(yīng)器芯片, 微流體燃料電池芯片, 微/納米流體過(guò)濾芯片等。
特定設(shè)計(jì)芯片的批量生產(chǎn)也降低了其成本。Caliper的旗艦產(chǎn)品是LabChip 3000新藥研發(fā)系統(tǒng),其微流體成分分析可以達(dá)到10萬(wàn)個(gè)樣品,還有用于高通量基因和蛋白分析的LabChip 90 電泳系統(tǒng)。據(jù)Caliper宣稱(chēng),75 %的主要制藥和生物技術(shù)公司都在使用LabChip 3000系統(tǒng)。美國(guó)加州的安捷倫科技公司曾與Caliper科技公司簽署正式合作協(xié)議,該項(xiàng)合作于1998年開(kāi)始,安捷倫作為一個(gè)儀器生產(chǎn)商的實(shí)力,結(jié)合其在噴墨墨盒的經(jīng)驗(yàn),在微流控技術(shù)尚未成熟時(shí),就對(duì)微流體市場(chǎng)做出了獨(dú)特的預(yù)見(jiàn),除了采用MEMS微納米加工技術(shù)外,采用噴墨打印是目前為止微流控技術(shù)應(yīng)用很多的產(chǎn)品路徑之一。利用微流控芯片對(duì)cancer標(biāo)志物檢測(cè)。
安捷倫在微流控技術(shù)平臺(tái)上的三個(gè)主要產(chǎn)品是Agilent 2100、 Bioanalyzer/5100、 Automated Lab-on-a-Chip (后有斯坦福大學(xué)Stephen Quake研究小組開(kāi)發(fā)的微流體控制因素大規(guī)模地綜合應(yīng)用和瑞士Spinx Technologies開(kāi)發(fā)的激光控制閥門(mén)。澳大利亞墨爾本蒙納士大學(xué)的研究者正在開(kāi)發(fā)可在微通道內(nèi)吸取、混合和濃縮分析樣品的等離子體偏振方法。等離子體不接觸工作流體便可產(chǎn)生“推力”,具有維持流體穩(wěn)定流動(dòng),對(duì)電解質(zhì)溶液不敏感也不受其污染的優(yōu)點(diǎn)。瑞士蘇黎士聯(lián)邦工業(yè)大學(xué)的David Juncker認(rèn)為,流體的驅(qū)動(dòng)沒(méi)有必要采用這類(lèi)高新技術(shù),利用簡(jiǎn)單的毛細(xì)管效應(yīng)就可以驅(qū)動(dòng)流體通過(guò)微通道。微流控芯片技術(shù)用于毛細(xì)管電泳分離。采用MEMS加工的微流控芯片廠家電話
微流控芯片定制方案。四川微流控芯片技術(shù)的研究進(jìn)展
先前報(bào)道了微流控芯片的另一項(xiàng)采用體外細(xì)胞培養(yǎng)技術(shù)的研究,其中軸突和體細(xì)胞被物理分離,從而允許軸突通過(guò)微通道。借助這項(xiàng)技術(shù),神經(jīng)科學(xué)家可以研究軸突本身的特征,或者可以確定藥物對(duì)軸突部分的作用,并可以分析軸突切斷術(shù)后的軸突再生。值得一提的是,微通道可能會(huì)對(duì)組織或細(xì)胞產(chǎn)生剪切應(yīng)力,從而導(dǎo)致細(xì)胞損傷。被困在微通道下的氣泡可能會(huì)破壞流動(dòng)特性,并可能導(dǎo)致細(xì)胞損傷。在設(shè)計(jì)此類(lèi)3D生物芯片設(shè)備時(shí),通常三明治設(shè)計(jì),其中內(nèi)皮細(xì)胞在上層生長(zhǎng),腦細(xì)胞在下層生長(zhǎng),由多孔膜分叉,該膜充當(dāng)血腦屏障。四川微流控芯片技術(shù)的研究進(jìn)展